Master Thesis

Czech

Technical
University
in Prague

Faculty of Electrical Engineering

Department of Computer Science

User Behavior Clustering and Behavior
Modeling Based on Clickstream Data

Jan Zaloudek

Supervisor: Ing. Jan Drchal, Ph.D.
May 2018

ii

cvut ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
Pfijmeni: Zaloudek Jméno: Jan Osobni ¢islo: 393687

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Studijni obor: Uméla inteligence
\ J

Il. UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:

Shlukovani a modelovani chovani uzivatel(l zalozené na datech z webového prohlize¢e
Nazev diplomové prace anglicky:

User Behavior Clustering and Behavior Modeling Based on Clickstream Data

Pokyny pro vypracovani:

Study the current state of the art of user behavior modeling and clustering.Design a behavior clustering algorithm. Consider
extensions to semi-supervised learning.Train models using data provided by Smartlook. Experiment with features beyond
URL addresses and mouse clicks such as web browser traces. Evaluate the quality of all models.

Seznam doporucéené literatury:

[1] Jonas Amrich. Modeling on-line user behavior using url embedding, diploma thesis, CTU, 2017.

[2] Igor Cadez, David Heckerman, Chris Meek, Padhraic Smyth, and Steven White. Visualization of navigation patterns
on a web site using model based clustering. Technical report, March 2000.

[3] Michael Scholz. R package clickstream: Analyzing clickstream data with markov chains. Journal of Statistical Software,
Articles, 74(4):1?17, 2016.

[4] Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng, and Ben Y. Zhao. Unsupervised clickstream clustering for user
behavior analysis. In Proceed- ings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ?16,
pages 2257236, New York, NY, USA, 2016. ACM.

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jan Drchal, Ph.D., centrum umélé inteligence FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 02.03.2018 Termin odevzdani diplomové prace:

Platnost zadani diplomové prace: 30.09.2019

Ing. Jan Drchal, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Ing. Pavel Ripka, CSc.
podpis vedouci(ho) prace podpis dékana(ky)

. J

ll. PREVZETi ZADANI
4

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor Jan
Drchal for guidance and patience help dur-
ing my work on this thesis. I would also
like to thank Smartlook.com for providing
the dataset.

Special thanks belong to my family, girl-
friend, and friends for great support dur-
ing the time of my studies and writing of
this thesis.

Declaration

I hereby declare that I worked out the pre-
sented thesis independently and I quoted
all the sources used in this thesis in accord
with Methodical instructions about ethi-
cal principles for writing academic thesis.

In Prague, . May 2018

Jan Zaloudek

Abstract

With growing online population having a
good understanding of users’ behavior on
the internet is becoming very important.
In this thesis, we explore different ways
how to represent the behavior of online
users and how to apply clustering and
semi-supervised learning methods to this
knowledge.

We propose two different approaches
how to transform captured clickstreams
together with other events to the vector
space. The first method is based on fre-
quencies of the events and the second one
is build on top of distributed bag-of-words.
The second method shows promising re-
sults in clustering and semi-supervised
tasks.

Keywords: Web usage mining, User
behavior clustering, Clickstream
modeling, Distributed representation of
documents, Semi-supervised learning,
Machine learning

Supervisor: Ing. Jan Drchal, Ph.D.

vi

Abstrakt

S rostoucim poc¢tem uzivatel internetu
je dobré znalost chovani jeho uzivateli
nezbytnd. V této praci zkoumame razné
zpusoby, jak reprezentovat chovani uziva-
teld internetu a moznosti, jak tuto znalost
poté pouzit pro shlukovani a pro ¢astecné
Fizené uceni.

Navrhujeme dva rtizné zptisoby trans-
formace snimanych clickstreamu spole¢né
s dalsimi udalostmi z prohlizece do vek-
torového prostoru. Prvni metoda je za-
lozena na frekvencich udalosti a druha
je zalozena na distribuovaném bag-of-
words. Druhé predstavend metoda vyka-
zuje slibné vysledky pri tkolech shluko-
vani a ¢astecné rizeného uceni.

Klicova slova: Web usage mining,
Shlukovani chovani uzivateli, Modelovani
clickstreamu, Distribuovana reprezentace
dokumentii, Césteéné i{zené ucen,
Strojové uceni

Preklad nazvu: Shlukovani a
modelovani chovani uzivatelt zalozené na
datech z webového prohlizece

Contents

1 Introduction 1
1.1Goals ..o 2
1.1.1 User behavior representation .
1.1.2 Clustering behavior models. . .
1.1.3 Semi-supervised extension. . . .
2 Related Work 3
2.1 Behavior modeling
2.1.1 Representation with events
frequencies.,
2.1.2 Neural network based methods 3]
2.1.3 Markov chains
2.2 Clickstream clustering
2.3 Semi-supervised approaches
2.4 Conclusion 5]
3 Theoretical background
3.1Bagof Words
3.2 Inverse Document Frequency
33n-gram ... 8]
3.4 Latent Semantic Analysis
3.5 Similarity of vectors............ 9
3.6 Distributed representation 9
3.7 Document extension 1a
3.8 Clustering
381 Kmeans.................. 11l
3.8.2 Hierarchical clustering
3.9 Semi-supervised learning.
3.9.1 Label propagation..........
4 Design and approach 15|
4.0.1 Entities in the system
4.1 Proposed idea
4.2 Preprocessing the data
4.2.1 Extracting the set of the
interest........... 17|
4.2.2 URL clustering

vii

4.2.3 Click identification 18]
4.2.4 Discretizing time component
4.2.5 Building sequences
4.3 Behavior Embedding
4.3.1 Frequency Based Model
(FB-k/d) oo
4.3.2 Neural Network Based Model
(NN-d) ...
4.4 Clustering of embeddings
4.4.1 Selecting number of clusters .
4.4.2 Distance measure 27
4.5 Semi-supervised learning.
4.5.1 Label propagation..........
452NN-d..................... 28]
4.6 Summary of the chapter
5 Implementation 31
5.1 Technology stack
5.2 Dataset retrieval 132l
5.3 Behavior Embeddings
6 Experiemntal part: Dataset and
models 33
6.1 Dataset exploration
6.2 Baseline model
6.3 Cross-validation [34]
6.4 Building a sequence
6.5 Behavior embeddings..........
6.5.1 Frequency Based Model
(FB-k/d) oo
6.5.2 Neural Network Based Model
(NN-d) ...
6.5.3 Discussion of results........ 37
7 Experiemntal part: Clustering 39
7.1 Visualization of the data....... 39

7.2 Frequency Based Model (FB-k/d)

7.3 Neural Network Based Model
(NN-d)

7.4 Evaluation by hand
7.4.1 Case study: Description of

FB-1-5 anomalies (SL300)

7.4.2 Case study: Description of
NN-80 clusters (SL300).......

7.4.3 Interesting features.......

8 Experiemntal part:
Semi-supervised learning

9 Conclusion

9.1 Future work................

A Raw recorded event
B NNB80 with 12 clusters
C FB-1-5/300 - Clustering

D NN-300 - Agglomerative
clustering

E Event embeddings (PCA)

F Bibliography

5 & &

2EQ @8 288

viii

Figures

4.1 Relations of the original entities
4.2 Analogy between documents and
visitors ... 17|
4.3 Sleep events that are used to
mimic time between two consequent
events in the sequence

4.4 Adding time delta between events
in sequence

4.5 The architecture of the
paragraph2vec network applied to
the event sequences. On the input
goes one-hot encoded tag t;
belonging to some sequence and is
trained to predict one-hot encoded

events from that sequence.
4.6 Architecture of the pipeline
6.1 A number of events per user ...

7.1 Elbow plot and silhouette values
for FB-1 model, TSNE projection,
k-means, red dot indicates
elbow/maximum................

7.2 Elbow plot and silhouette values
for NN-300 model, TSNE projection,
k-means, red dot indicates
elbow/maximum................

7.3 Sizes of the 12 clusters for NN-80

8.1 Label propagation - number of

neighbors,
8.2 Label propagation - amount of
data ... 47

B.1 Colored clusters of users in SL300
modeled by NN8O split into 12
clusters with K-Means. Each point
represent one user and shape of the
point resembles the state of the user.

C.1 Elbow plot
C.2 Silhouette values 56

ix

C.3 TSNE projection
D.1 Average silhouette values
D.2 TSNE projection

E.1 PCA visualization of inputs and
buttons in the application. Those
embedings capture quite well
semantic structure of the

application.

E.2 PCA visualization of inputs and
buttons in the application with
reduced CSS selectors

Tables

6.1 Accuracy of Logistic regression on
different sequence types

6.2 Sizes of the embeddings and
accuracy of FB-k models with
different k 136/

6.3 Accuracy of FB-k/80 and
FB-k/300 (dimensionality of
embeddings reduced to 80 and 300,
respectively) models with different &

6.4 Accuracy of NN-d for various
valuesof d 37

Chapter 1

Introduction

Discovering human behavioral patterns is topic studied by many academic
disciplines such as psychology, sociology and now even computer science.
Understanding human behavior on the internet is becoming a big part of
understanding modern society, where people spend online most of their lives.
There is an option to do surveys and directly ask people about their opinions;
however thanks to the technological progress it is now possible to collect more
data than ever, and with all the computational power we have today, it is
possible to dive deep to those data and start discovering new patterns.

The behavior of the users on the internet can be recorded in many different
formats; however, in the end, the user behavior is usually captured as a
clickstream. Along with the clickstream, which is a log of all clicks that
user performed in the browser, other information may be stored. That extra
information can be values in forms, scrolling in a page, Javascript errors or
even custom events from the application itself. As applications nowadays
getting more complex, clicking on some element often does lead to change of
the actual URL, but instead, it switches some internal state of the application
in the browser. Therefore following only URLs seems not to be sufficient for
complex behavior analysis in modern application.

Clickstream analysis is from the group of Web Mining tasks - more precisely
Web Usage Mining. There are many fields where knowledge of user’s online
behavior can be applied and valued. There are application designers who
want to know, how the users interact with the user interface. There is also
lot of work aiming at security and frauds detection. Worth mentioning is the
use of those data in e-commerce, where sellers can predict groups of their
customers, and better target their products using some kind of recommender
system. There are different approaches, how to represent actual user behavior
and how to find a relation between two users. In this thesis we will focus on a
close relation between modeling user behavior and natural laguage processing,
so called NLP, tasks.

1. Introduction

. 1.1 Goals

There are three primary goals in this thesis. First of all, there is a need for
a user behavior representation. As we mentioned in the introduction, there
is a close relation between modeling an user behavior and modeling text
documents for NLP tasks, therefore we utilize some of already well-known
techniques from NLP in our work. Next task is to clusterize representation
obtained in the first step, and the final task is to propose a semi-supervised
extension.

Bl 1.1.1 User behavior representation

At first, it is necessary to find a way, how to represent a user behavior. There
are several options mentioned in Chapter 2. However, clickstream data are
usually very noisy, and it can be tricky to find ideal representation. Next
step is to somehow incorporate other data that are available in the dataset
(such as browser errors, changes of URLs or typing into inputs) into that
representation. Construction of solid representation is crucial for other tasks
that will take use of that - such as clustering or classification, to obtain some
quality results.

B 1.1.2 Clustering behavior models

After obtaining a suitable representation of user behavior model, next task
is to clusterize users into somehow similar groups. There are already many
different clustering algorithms, where each of them is aiming at a different
aspect of data being clusterized. The task will be to investigate current state-
of-the-art options and maybe propose an extension to the existing solution.
Clustering can be highly subjective when it comes to interpretation of the
results. Therefore it is not easy to evaluate obtained cluster assignments for
the data. This issue can be diminished by investigating options provided by
semi-supervised learning.

B 1.1.3 Semi-supervised extension

It is common for users’ clickstream data that there is some extra information
available about the users. This information can be used for training semi-
supervised models. Those models can be used for example for suspicious
users detection, where usually only just a small portion of labeled users is
known and unlabeled portion of the users is much higher.

Chapter 2
Related Work

In past years many approaches to modeling and clustering user behavior
emerged. How web applications evolved and growing population of internet
users grew and became more demanding, the complexity of web application
grew as well. This chapter is divided into three sections. We start with
research of related problems in NLP and their connection with user behavior
modeling. Then we examine methods based on Markov chains. After that we
discuss some related work for clustering and semi-supervised learning.

B 2.1 Behavior modeling

B 2.1.1 Representation with events frequencies

The most straightforward approach to user behavior representation is done
by counting events occurrences. Despite its simplicity it is widely used in
different applications of clickstream analysis and behavior modeling. It can
be seen applied in [Wang et al., 2016] |[Wei et al., 2012] [Wang et al., 2017].
This method can be seen as the variation of Bag of Words method mentioned
in Section which was proposed by Harris in 1954 and
then extended by Jones in 1973. Similarity between BoW
method, that is used in NLP, can imply a close connection between NLP and
clickstream modeling.

B 2.1.2 Neural network based methods

Very recent proposed method, how to represent user behavior published by
that is extending work of Vasile [Vasile et al., 2016] is based
on methods that are well known in NLP. It is mentioned in Section 2.1.1]
that some researchers already used NLP practices to represent the behavior.
However, this one goes more in-depth. It is based on work published by
Mikolov [Mikolov et al., 2013a] called Word2vec and then extended by Quoc
et al. [Le and Mikolov, 2014], where they propose distributed representation

3

2. Related Work

of words (documents) in a vector space. This method is based on neural

networks and have wide range of applications as can be seen in
or [Ma et al., 2016].

B 2.1.3 Markov chains

Markov models are often used for predictive modeling, and many researchers
experiment with this approach to model and predict user behavior. Markov
model is a stochastic model where next state depends only on the cur-
rent state. This method is presented in [Lu et al., 2006] |Jonas, 2017] and
[Deshpande and Karypis, 2004] to predict navigation paths of the users. Prob-
lems of this method are addressed by Amrich in his work , where
Markov chain is used for clickstream prediction. It is quite challenging to use
this approach for modeling user behavior because it can be very computational
demanding due to the high sparsity of state space of the higher order Markov
approximations.

B 2.2 Clickstream clustering

Markov Chains are not usually sufficient for capture of complex behav-
iors of the users. Unsupervised user’s clickstream clustering seems to be
the more promising way how to retrieve interesting information about user
groups. There are approaches based on different types of clustering. First
approach mentioned in [Wang et al., 2016] and |[Wang et al., 2017] is em-
ploying hierarchical divisive clustering. This method is fairly successful,
however, it assigns only one cluster to each user, which is not always
true in real-world datasets. This issue is then addressed by Silahtaroglu
[Silahtaroglu and Donertasli, 2015].

The downside of clustering is that output of unsupervised methods does
not necessarily provide meaningful assignments for humans. There is usually
need for some checking what is actually in the produced clusters and evaluate
that information manually.

B 23 Semi-supervised approaches

Wang [Wang et al., 2016] mentions that semi-supervised models are used
for Sybil detection in different online applications. This application can be
generalized to anomaly behavior detection. Baseline for semi-supervised clas-
sification is label propagation which can be useful in case of user’s behavior
labeling, because it performs well in discovering community structures in the
networks |[Raghavan et al., 2007].

2.4. Conclusion

. 2.4 Conclusion

In this chapter we presented some recent works on topic of user behavior
modeling, clustering and semi-supervised learning. There is often mentioned
connection between behavior representation and NLP. Our proposed models
will continue in this trend and we will try to take a use of existing and
well-known methods from that field.

Chapter 3

Theoretical background

B 3.1 Bag of Words

Basic and the most straightforward approach for a document representation is
done by constructing bag of words vector. It starts by building a vocabulary,
which is the list of unique terms that appear in the source documents. BoW
vector then represents a single document as a vector D, where the length of
D is equal to the number of the terms in the vocabulary and D, corresponds
to the number of occurrences (frequency) of term ¢ in the document.

A significant drawback of this approach is that all the vectors are usually
very sparse, given the fact that not every document does contain all of the
terms of the vocabulary. Another issue with BoW representation is that it
does not preserve any information about term order, which can be important
in various applications. Despite its shortcomings, it is still used quite often
as a quick baseline solution.

B 3.2 Inverse Document Frequency

TF-IDF (stands for Term Frequency - Inverse Document Frequency) addresses
an issue with term importance, which is not present in BoW method. It was
introduced back in 1973 by Jones and is still widely used. It
is based on an idea that some terms (such as the, a or and in the English
language) tend to repeat a lot across multiple documents and therefore carry
less information about the actual document.

TF in the name stands for term frequency which we discussed in Sec-
tion - it is a number of occurrences of the term in a document. IDF
stands for inverse document frequency, and its computation is shown in
Equation (3.1)):

1+ny

idf (t) = logw

+1 (3.1)

7

3. Theoretical background

where ng is total documents count in the set and df(d,t) is the frequency
of term ¢ in document d. Actual term frequency is then calculated as shown
in Equation (3.2

tfidf (t,d) = Lf (¢, d) * idf (t) (3.2)

A vector of terms frequencies are then usually normalized using 12 nor-
malization because it is not usually necessary to maintain the length of the
vector and it has some interesting properties discussed in Section [3.5

This method has more focus on important features than pure BoWw. However,
it does not solve the problem with a missing context of the terms and also
the problem of often very sparse vectors.

B 33 n-gram

To introduce some sense of word context in previously mentioned methods,
it is possible to group pairs, triplets or even more words. This method of
grouping words is called n-gram. In formal saying n-gram is the consecutive
subsequence of length n of some sequence of tokens wy ...w,, [ngr, 2018].
It is often utilized by one of the text vectorization methods presented in
Section 3.1l and Section 3.2

A process of building n-grams is quite simple and straightforward. We have
to split the document (usually by spaces) into tokens, and that creates a list
of unigrams. It is now possible to move a sliding window of size n through
the list of the unigrams and with every step we get a new n-gram. This type
of n-grams is built on a word level. In NLP applications it is quite common
to build n-grams on character level, which provides more granularity and
allows to build the more general model of language. [Pedregosa et al., 2011]

B 3.4 Latent Semantic Analysis

The latent semantic analysis is technique often used in NLP and information
retrieval (IR) to discover possible relations among documents. In principle,
LSA is an application of singular-value decomposition (SVD) to reduce the
dimensionality of terms matrix produced by BoW or TF-IDF.

The output of LSA has lower dimension than original terms matrix, and
therefore data are more suitable for various tasks performed on documents
(such as clustering or classification). The main drawback of LSA (respective
SVD) it has high computational complexity, and it is not suitable for large
data.

LSA was first proposed by Deerwester et al. [Scott et al.,] and it was
recently applied to clickstream data by Weler [Weller, 2018] to analyze the
behavior of users and detect hijacked accounts.

8

3.5. Similarity of vectors

B 35 Similarity of vectors

One of the most widely used metrics to determine how similar two documents
are is cosine similarity. It has an advantage over the Euclidean distance
in documents related tasks because it compares vectors in terms their of
directions and is not affected by vectors magnitudes. This method takes two
vectors and produces a number in a range from -1 to 1. In documents similarity
applications vectors are usually non-negative, so, therefore, one angle cannot
be larger than 90°. For documents vectors 1 means, that documents vectors
are parallel and therefore similar and 0 means that vectors are perpendicular
therefore dissimilar. Cosine similarity is calculated as shown in Equation (3.3))
[Manning et al., 2008].

u*xv

_ 3.3
Tl = ol (3:3)

similarity(u,v) = cos() =
The complement of cosine similarity is called cosine distance, and it is
calculated as 1 — similarity(u,v).

In some applications, such as k-means clustering, it is preferable to use
Euclidean distance; however, this metric is not much useful for tasks, where
we care more about direction of the vectors than their euclidean distance. It
is possible to use Euclidean distance instead of cosine distance as long as the
vectors are 12 normalized.

B 3.6 Distributed representation

Method called Word2vec that is designed to produce distributed word
representation in vector space proposed by Mikolov [Mikolov et al., 2013a]
finds success in many NLP related tasks. Shortly after publication, many
researchers found out, that this method has broad spectrum of applications
(applications are mentioned in Chapter [2)).

Word2vec model is two-layer neural network and it can be implemented in
one of two possible architectures - either CBOW (Continuous bag-of-words)
or skip-gram. Both of these architectures are shallow neural networks, and
they produce distributed representation of words. However, each of them
is approaching this task in a slightly different way. The idea behind this
model is that words with similar meaning occur in similar contexts. Both
architectures solve a task where there is context w_i of the word w; presented
to the network and the actual word w; is being predicted. This is happening
in the case of the Continuous bag-of-word (CBOW). In case of the skip-gram
architecture, the task is reversed. That means word w; is presented to the
network on the input and the context is predicted on the output. Words are
fed into the network encoded in the form of one-hot vector - that means that
word w; is represented as the vector of zeros of a length that is equal to the
size of the vocabulary with 1 at the position 7).

9

3. Theoretical background

There are two main hyperparameters that need to be set, in order to
produce solid word embedding. The first parameter is the size of context
window, which determines how many words there will be before and after
the predicted, respectively guessed word. Size of context window is usually set
to value between 10 to 15 in NLP applications [Mikolov et al., 2013a]. Next
parameter is dimensionality of the embedding. This value is representing a
number of neurons in the hidden layer of the network.

There are some interesting properties of embeddings produced by word2vec
discussed by Mikolov [Mikolov et al., 2013b]. Computed vectors seem to be
able to capture very well synonyms and semantic relations among words. It
is also possible to use vector arithmetic and compute new vectors which will
be close to the analogical words (in this case close mean that cosine similarity
is high). For instance, we can see that W (king) — W (man) ~ W (queen) —
W{(woman) or W(France)—W (Paris) ~ W (Russia) — W (Moscow). These
properties can be useful in many applications outside the NLP applications,
and as it is mentioned in Chapter [2|it is also widely used.

. 3.7 Document extension

Word vectors are interesting, however, in many applications, it would be
useful to have a vector representation of the whole block of the text (para-
graphs or documents). The most straightforward solution is to sum or average
the word vectors that made up the original document. However this solu-
tion does not provide any better results than simple bag-of-words approach
[Le and Mikolov, 2014].

While word2vec works on the word level, an approach called paragraph2vec
leverages abilities of word embeddings to paragraph (document) level. In
paragraph2vec extension, there are two concepts similar to CBOW and
skip-gram mentioned in Section 3.6 called PV-DM (Paragraph Vector -
Distributed Memory) and PV-DBOW (Paragraph Vector - Distributed Bag
of Words).

First architecture PV-DM extends original word2vec idea by adding new
input nodes to the network that represents document identifier, which is also
encoded as a one-hot vector on the input. This works as memory and adds
context to the word vectors. On the output, the actual word is predicted.
Distributed Memory is similar to CBOW architecture from word2vec.

The second approach for computing distributed paragraph representation
is called PV-DBOW. This architecture is similar to skip-gram discussed in
Section 3.6, On the input the document identifier is presented and on the
output randomly sampled words from the paragraph are being predicted.
This method does not perform as well as PV-DM. However, the output
of those models can be combined and then produce even better results
[Le and Mikolov, 2014].

10

3.8. Clustering

B 38 Clustering

The main goal of clustering is to create multiple groups of items that share
similar properties in the unsupervised manner. Two different approaches
to the clustering will be discussed in this section. The first approach is
centroid-based clustering that is represented by K-Means algorithm, which
is a special case of distribution based Expectation-Maximization (EM). The
second approach mentioned in this section is connectivity based hierarchical
clustering.

B 3.8.1 K-means

K-means is quite an old clustering algorithm proposed in 1979 by Hartigan et
al.[Hartigan and Wong, 1979 It assigns each point from the original dataset
to one of the k centroids, where k has to be chosen apriori. The algorithm
starts by selecting k points as centroids and then runs in iterations. In each
iteration every point is assigned to the nearest centroid and position of that
centroid is then recalculated as a mean of points assigned to it. Algorithm
ends after an arbitrary number of iterations or when all centroids converge
and do not change.

Often mentioned drawback of k-means its sensitivity on initialization, where
positions of centroids are selected. It can produce diametrically different and
locally optimal results. However, it is possible to use the semi-supervised
method of k-means and place initial centroids with some sense of the clustered
data.

B EM algorithm similarity

EM algorithm is a generalization of k-means algorithm. In EM there are two
steps called expectation step, which is equivalent to assigning points to the
clusters and maximization step, which is equal to recomputing centroids.

B 3.8.2 Hierarchical clustering

In hierarchical clustering, there are two main approaches. The first one
is bottom-up approach called agglomerative clustering and the second
one is top-down approach called divisive clustering. Both approaches are
computationally complex, and there is a need for heuristics in both cases, to
be able to use those methods on larger-than-small datasets.

B Bottom-up

The first method of hierarchical clustering is called agglomerative. Agglom-
erative clustering begins with n clusters, where n is the number of items

11

3. Theoretical background

being clusterized. The algorithm then repeatedly in every step merges two
clusters that satisfies linkage criterion. There are several linkage criteria for
linking two cluster A and B:

Single min{distance(a,b):a € A,b € B}
Complete max{distance(a,b):a € A,bec B}

Average WllBI > aca vep distance(a, b)

The algorithm terminates when there is just one macro cluster that contains
all items. Time complexity of a naive implementation of agglomerative
clustering is O(n?). Therefore, it is not applicable to any larger datasets.

B Divisive clustering

This algorithm starts with all items in one big cluster and then splits that clus-
ter into smaller ones with some other flat clustering method. The algorithm
ends, when there are n clusters.

B 39 Semi-supervised learning

On the way between unsupervised learning and supervised one lays the
semi-supervised learning. Standard SSL tasks use a small amount of
labeled data together with a large quantity of unlabeled ones to improve
the learning accuracy. Acquiring labeled data is not always easy. However,
semi-supervised methods can produce better results than unsupervised ones
entirely without the labels and on the other hand supervised methods with
just a small amount of labeled data. There is also another option, how
to incorporate some specific knowledge into the unlabeled data - by using
constraints [Chapelle et al., 2010]. To make SSL meaningful task, there are
three assumptions, where at least one of them has to be fulfilled:

Smoothness assumption if two points 1 and x9 are close, their outputs
y1 and y2 should be close as well

Cluster assumption if two points share the cluster, they likely share a
label

Manifold assumption the high-dimensional data lie on a manifold

In this section approaches that make use of those assumptions to assign
labels to unlabeled data will be discussed.

12

3.9. Semi-supervised learning

B 3.9.1 Label propagation

This is an iterative algorithm for semi-supervised learning based on the
propagation of the labels on the graph. It assumes smoothness of the data,
so if two input points are close, outputs should also be close. To describe the
algorithm further lets presume that there are labeled pairs (z1,41) ... (21, y1),
and unlabeled pairs (x; 4+ 1,4, + 1) ... (xy,), and classes C. The goal is to
estimate labels of unlabeled data based on our knowledge of labeled ones.

The algorithm starts by building a fully connected graph, where each edge
has assigned weight w;j, where w;j is larger when the 7 and j are closer. Next
let us define a probabilistic transition matrix 71" as follows:

w;j
I+u

Tj = Pli—§) = <
k=1 WkJ

(3.4)

T is the probability of propagation label from node i to node j. All nodes
have a soft assignment of a label represented by a probability distribution
over labels. Let us define the matrix of labels Y of size [+ u x C, where
each row of Y is representing class assignment probabilities for observation ;.
The actual algorithm of label propagation is iterative, and in each iteration,
there are three steps [Zhu and Ghahramani, 2002]:

1. Propagate-Y < TY
2. Normalize - normalize rows of Y

3. Clamping - update known labels in Y

Iterations of the algorithm are referred as t/ Algorithm terminates after
arbitrary number of iterations, where it may end up non-converged. Another
option for algorithm termination is when the difference between two label
assignment distributions Y* and Y'~! is below some arbitrary threshold
[Pedregosa et al., 2011].

13

14

Chapter 4

Design and approach

In this chapter, we present the main idea behind user behavior embed-
dings that represent recorded clickstream together with other events that
occurred during user’s visits. With this stated, we also introduce new term
eventstream to generalize clickstream that includes other types of events
than clicks. We will also describe the raw data provided by Smartlook and
process of collecting and prepocessing them into the form which would be
suitable for building behavior embeddings. In the last part of this chapter we
will discuss different clustering and semi-supervised approaches that will be
used to group similar visitors in Chapter [6l

B 4.0.1 Entities in the system

Original data provided by Smartlook are represented by four entities - visitor,
session, record, and event (show in Figure [4.1). The atomic unit of
the dataset is called event (the example of such an event can be seen in
Appendix . It contains information about low-level browser events, either
invoked by a user (such as clicks or typing), or by a browser (e.g. JavaScript
runtime errors) or the events emitted by the application. Events are formed
into records, which represent visit of a single page. On higher level, records
are grouped into sessions, where sessions are separated by 15 minutes of
visitor’s inactivity. Every session belongs to a visitor, that is recognized by an
identifier. This identifier is kept in visitors browser cookies, and therefore it is
possible to identify visitor among multiple sessions in one browser. Another
option how to identify the particular visitor is to receive its unique identifier
from the actual application, that knows the identity of the visitor (for example
when the visitor logs in, it is then uniquely identifiable).

Figure 4.1: Relations of the original entities

15

4. Design and approach

B Metadata fields of the events

Event entity as the atomic unit of the user’s behavior record have some
metadata fields stored with them. Not all of them are important for this
work so that we will focus just on a subset.

At the most crucial field is called eventType. It represents several different
types of possible events:

click is the most fundamental event, representing all clicks user performed
in a browser. Clicks do not have any first-class semantic identification.
Therefore there is a discussion in Section 4.2.3| about semantic clicks
identifiers.

url represents every change of the state in the address bar. This is especially
useful for SPA (Single Page Applications, where a change of the URL
address does not always reload the whole page from the server.

text is emitted every time user’s fill in some textual field (such as <input>
or <textarea>). This event is usually preceded by a click event.

error event is triggered by a user’s web browser when JavaScript runtime
error OCCurs.

custom is programmatically emitted event from the recorded application.
Its name is stored in field eventName

The rest of the fields are used to build features together with eventType:

pageUrl stores actual value of the address bar in time of the event occur-
rence.

value stores contextual data of the event (e.g. value of the text field or text
of the error)

selector is CSS selector of the node in the DOM tree

elements stores list of more specific selectors in the DOM tree. Only the
first element of that list is used in this work (represents actual element)

time represents milliseconds elapsed from the record start

props stores different types of information that does not have to be always
present.

vid is visitor identifier
sid is session identifier

rid is record identifier

16

4.1. Proposed idea

B a1 Proposed idea

In Chapter 2| we mention the striking similarity between textual data and
click data. It seems that it is possible to transform clicks (resp. events) into
sequences ordered by time of occurrence and treat them as strings. The
proposed analogy between visitor and document is presented in Figure 4.2
Thanks to this observation, it is now possible to apply different techniques
known from NLP to build embeddings of the eventstreams that represents
user behavior.

Visitor | Analogyto Document
U S — —
Session r-' Paragraph
el ; SR l

Record ~ [------------- Sentence

v v

Event ~ p----o-e-e-e-- Word

Figure 4.2: Analogy between documents and visitors

B a2 Preprocessing the data

Raw event stream data tend to be "noisy" and it needs to be preprocessed in
order to use it further in modeling behavior. There are several issues addressed
in preprocessing steps such as extracting the subset of pages for modeling,
cleaning and clustering URLs and because clicks are not semantically identified,
it is necessary to create identifiers for those events.

B 4.2.1 Extracting the set of the interest

It is not always desirable to analyze whole complex application, that has
multiple different sub-applications. As an example: Facebook consists of
multiple smaller applications, such as events, chat or advertisement manager
and the main application serves more as a dashboard to access any of them.
It makes sense to analyze just a subset of the application. Therefore the
first step of the data preprocessing is to extract only events relevant to some
part of the application. This is done by matching URLs with the regular
expression and this approach assumes, that URLs in the application have
some semantic meaning.

17

4. Design and approach

B 4.2.2 URL clustering

Each event has assigned URL address of the page of its occurrence. This is
especially important for events of type url (respectively navigation) where
there are as much unique url events as there are unique URL addresses. This
approach is not applicable for larger websites, where URL address usually
holds much information. We state an assumption that similar URLSs represent
similar behavior. After observation of common URL addresses, there can be
seen the pattern, because URLs usually follow a directory-like structure or
at least contain some information, which makes them good candidates for
clustering.

At first, it is necessary to preprocess all URLs. Standardized scheme of
the URI is following:

Listing 4.1: URI Scheme
scheme: [//authority]path[?query] [#fragment]

Listing 4.2: URL query
keyl=valuel&key2=value2

The query is a string representing key-value assignments (Listing |4.2)). We
start with the strong assumption that everything except path and query can
be stripped. A domain can be stripped, because we made an assumption
that the model is only for one domain only. With stripping the domain, it is
also possible to remove the scheme: and [//authority] because those are
same in all cases and even if they are not, there is not much useful information
about the behavior of the visitor. Last part of the URL - fragment - can also
be removed, because it is usually used just for navigating in terms of one
page.

Next step of preprocessing the URLs is tokenization. The URL is now
in the form of path[?query] and therefore can be split by any of those
characters - / ? &. It is also quite common to use dashes (=) or underscores
(_) in the URLs, so it seems to be reasonable to use those for splitting the
address into the tokens.

To be able to clusterize the URLs, it is necessary to represent them in
the vector space. For this case, L2 normalized TF-IDF vectors mentioned in
Section |3.2| are the good-enough choice.

For clustering, hierarchical agglomerative algorithm is used, with use of
cosine similarity and average linkage (mentioned in Section 3.5).

B 4.2.3 Click identification

In Appendix [A]is an example of a raw click event. It may seem it is uniquely
identified by its selector or selector and URL combination. However, those

18

4.2. Preprocessing the data

two values would generate the long and sparse feature vector. In many related
works, every click event is semantically labeled, and it is possible to identify
same click action between different parts of the website. In case of a provided
dataset, no such information is available due to its generic nature. To address
this issue, four different approaches how to generalize the click identification.

B Text value

First and most straightforward approach how to identify a button or a link
is by its caption. This approach would be probably fine for some simple
websites, however, in larger applications, there could be some issues. One
of those issues is using images instead of text, so it would be challenging to
retrieve any semantic meaning of the actual content. Applications may also
be translated into multiple languages, so one button would have a different
label in some two language mutations and therefore different identifier. Last
steps are about discretizing time component and building the sequences of
events.

B CSS selectors

In web browser, all the elements that are present on the web page are kept in
a structure called a DOM tree. Every element in a DOM has its name and
some assigned attributes. To identify particular element, there are several
options that can be used to navigate around the tree and to identify the nodes
by a variety of criteria. The first option is to use XPath, however, in case of
this work, XPath queries are not available in the dataset. Other options are
to use CSS selectors, that aim to solve the same problem as XPath in more
expressive and shorter way.

CSS selector is a string where single subtree selectors can be separated by
tree traversal characters - space, 4+ sign or >sign. Example of CSS selector
can be seen in Listing 4.3

Listing 4.3: Full CSS selector example
HTML BODY DIV.box BUTTON.blue.wide

The downside of this approach is that it does not generalize well and for
example one button may have different selectors even in term of one page,
when it is moved somewhere else in the DOM tree.

B Reduced CSS selector

CSS selectors can represent the path to the same node in many different
unambiguous ways. However, it does only apply in the context of a single
page. Between two different web pages, where each of them has a different
DOM tree, the selector from one tree does not necessarily represent the same

19

4. Design and approach

node in the second tree. To resolve this problem, we can make an assumption,
that only the last part of the selector, which represents the element with its
name and id attribute or class attribute, is sufficient to represent semantically
similar among multiple pages. Example of this can be seen in Listing |4.4.

Listing 4.4: Full CSS selector example
BUTTON.blue.wide

B Reduced CSS selector with context

The idea of reduced CSS selector is probably too wide to be practically used.
One reduced selector may have different meaning among multiple pages. To
present some context to this selector, we add a cluster label of the page
it occurs on to the selector. This is based on assumption, that selector
(e.g. BUTTON.blue.wide) has similar meaning on a landing page, but in the
application settings, its meaning is probably different.

B 4.2.4 Discretizing time component

A dataset of the events contains time as a continuous component and in order
to build a discrete sequence from the user’s events we have two options, how
to deal with the time between the events.

The first approach is to get rid of the time component between two events
and preserve the only order of the events as they occurred in time. This
method will not be able to capture time differences between two events and
losing this information may produce unwanted results in an application where
knowledge of time is essential. For example, two users can produce the same
sequence of events such as Visit login page — Type username — Type password
— Click login button. First of the two users logs in instantly, however, the
other one hesitates and does not know where is the Login button. This can
be considered as two different behavior profiles, and without knowledge of
time elapsed between those events, it is not possible to discover the difference
between the profiles.

To introduce the sense of time to the sequence, we add a sleep event
between every pair of the events in the sequence. The process of building
sequences with discrete time events is shown in Figure 4.4. For purposes of
this thesis, we introduce for new events called sleep events shown in Figure |4.3.

We may notice that sleep-10 in Figure 4.3|is half-open. This is because
some types of events (usually emitted from the code) can occur in the almost
same moment, and it does not have any practical meaning to capture intervals
in higher resolution than 1 second. Too much granularity would introduce
unnecessary noise into the data and would not provide any meaningful
features.

20

4.2. Preprocessing the data

sleep-10 (0 seconds, 10 seconds]
sleep-60 (10 seconds, 60 seconds]
sleep-600 (60 seconds, 600 seconds]

sleep-inf (600 seconds, o)

Figure 4.3: Sleep events that are used to mimic time between two consequent
events in the sequence

Original data

Event A] [Event B] [EventC] [EventD]

Sequence of events (Discrete time delta)

Event A][Sleep 1][Event B][Sleep 2][Event C][Event D][Sleep 3]

Figure 4.4: Adding time delta between events in sequence

B 4.2.5 Building sequences

After discretizing time component and preprocessing the data, we proceed to
build sequences of events. This sequence contains string event descriptors
Listing 4.5 of all events ordered by time of occurrence. This allows us
to perform different operations on the sequences with time-locality quite
efficiently. Event descriptor is shown in Listing [4.5] It consists of mandatory
part event type and an optional numerical part event identifier. Those parts
are separated by a dash. Event identifier represents the numerical identifier
of a click (Section 4.2.3) or an URL (Section |4.2.2)

Listing 4.5: Format of event descriptor.

<event type>[-event identifier]

B Sequence contraction

To reduce the amount of noise caused by repeated actions (e.g., repeated
click on a scroll bar or "rage" clicking on a button) we introduce sequence
contraction, that takes advantage of the time locality of the sequences. This
process goes through the sequence and removes all consecutive duplicates,
that share same event type, and the event identifier.

21

4. Design and approach

B 2.3 Behavior Embedding

In this thesis, we propose two different methods for building embeddings
of users eventstreams. Both methods are using sequences presented in Sec-
tion |4.2.5, however, each of them has a different approach how to find ideal
representation.

The first approach use more traditional techniques well known from NLP.
Behavior embeddings are based on n-grams and their frequencies. As an
extension to this SVD is then used for dimensionality reduction (a technique
known as Latent Semantic Analysis in NLP) to possibly improve clustering
performance by lowering high dimensionality of computed vectors.

Second proposed approach to produce embeddings is based on relatively
new work called paragraph2vec [Le and Mikolov, 2014]. This method has
architecture very similar to word2vec by [Mikolov et al., 2013a], but it extends
its capabilities to build embedding for whole documents. In its core, it is a
shallow neural network that is able to learn embeddings of the documents.
We use this to compute vectors from the user behavior sequences. To capture
common consequent events, we also include an extension for phrase extraction
to describe them.

B 4.3.1 Frequency Based Model (FB-k/d)

The first proposed approach is based on the assumption that the user behavior
is a vector of weighted event frequencies. This model is referred as FB-k/d,
where k represents value of n in n-grams (discussed in Section |4.3.1)) and d
is optional argument that represents application of SVD for dimensionality
reduction of embedding to d. Those frequencies are weighted by idf (Inverse
Document Frequency) to diminish the influence of events that occur too often
and therefore do not provide much information about actual event sequence.

The process of building this model can be divided into four steps:
1. Build a set of possible features F' and call it vocabulary
Filtering vocabulary

Build feature vectors

=

(optional) Perform dimensionality reduction using SVD

A downside of this approach is that it poorly generalizes and cannot
recognize new events either sequences that were not in a vocabulary before.

B Building a vocabulary

Baseline method takes every single event in each sequence without any context
(unigram) as a feature. In some cases, the context may not be necessary,

22

4.3. Behavior Embedding

and this method can produce a meaningful representation. However, without
context, it cannot capture order of the events.

To preserve ordering on a local level, we introduce context by extension to
n-grams. For each sequence, we build a list of all 1...k-grams, where k is
some arbitrary number and uses all the produced n-grams as features. This
approach can dramatically increase the number of features in the vocabulary.
However, it captures much more information, and it can be scaled quite easily
and predictably.

B Filtering a vocabulary

To reduce the size of the vocabulary, we filter out those features, which do
not meet desired criteria of document frequency. For every feature ¢ in the
vocabulary, we calculate many occurrences throughout all sequences df (t) and
remove all features where df (t) < 5. This number was determined empirically
from different observations and finding, that in a reasonably large set of event
sequences there are some events (such as misclicks), that do not have any
deeper meaning.

B Building a vectors

With filtered vocabulary, it is now possible to construct vector representation
of event sequences. Every sequence S; is encoded as vector D;, where D,j =
tfidf (F;, S;) (computation of tfidf is described in Equation (3.2])). We may
notice that the resulting vectors are usually very sparse. This is a common
issue with BoW representation when each of the documents contains only a
subset of all possible features in vocabulary.

The produced vectors can be now passed further to the clustering step.
However, it is not usually suitable to have a high dimensional sparse matrix.
Therefore we use SVD to find a representation in a lower dimension space.

B 4.3.2 Neural Network Based Model (NN-d)

Second proposed approach to building a behavior embeddings from the event-
streams is referred to as NN-d, where d stands for the dimensionality of
produced embeddings. It is based on the skip-gram architecture, and it is
utilizing an extension of this approach called DBOW (Distributed Bag of
Words), which was designed to generate paragraph embeddings that well
capture semantic relationships among them [Le and Mikolov, 2014]. The
pipeline of this model is following;:

1. (optional) perform sequence contraction

2. (optional) build list of common n-grams in all sequences and replace
frequent n-grams by a single event

23

4. Design and approach

3. discard events with less than 5 occurrences
4. build list of tags and sequences assigned to them

5. train model on pairs of tags and events

We start off by stating, that every event sequence has assigned an arbitrary
number of tags. The tag is usually only one and contains the identifier of the
user that produced that particular sequence. However, one tag can belong to
more than one sequence (we will utilize this option later on). The architecture
of the neural network is shallow, with only one hidden layer. The input of
the network is one-hot encoded tag t; that belongs to some event sequence.
The next layer is hidden with d neurons, where d is dimensionality of the
embeddings. The activation function of the hidden layer is linear. Finally,
the output layer is one-hot encoded event j from the sequence, with softmax
activation function. During the network training, algorithm iterates over all
sequences, their tags, and events and trains the network on tag-event pairs.

Tag t;

Embedding

OOO000O

HEE event H EE event,

Figure 4.5: The architecture of the paragraph2vec network applied to the event
sequences. On the input goes one-hot encoded tag t; belonging to some sequence
and is trained to predict one-hot encoded events from that sequence.

24

4.4. Clustering of embeddings

B Common n-grams

Using DBOW model, as the name suggests, does not consider any context of
the events. One possibility is (as proposed in the previous model) to add all
possible n-grams to the dictionary and then train the model. However, as
proposed in [Mikolov et al., 2013b] it is not necessary to add only those, that
meet the desired criterion. In this thesis, we use scoring function to filter
bigrams 4.1;

count(e;ej) — min__count

score(e;, ej) = (4.1)

count(e;) * count(e;)
where e; and e; are events from the vocabulary and e;e; means that e; is
directly followed by e;.

To get longer sequences, we repeat this bigram building process one more
time to get frequent trigrams. We also consider all sleep events as stop-words.
That means those events are not taken into account and are skipped during
the building of bigrams. For purposes of this work the min.ount = 5 and
score threshold, to add bigram to the vocabulary is set to 10.

Bl Conclusion

The main advantage of this model is that it produces dense vectors with
arbitrary dimension d. However, this approach has the same disadvantages
as Section [4.3.1, and that is lack of generalization for unseen events. When
the model observes an unknown event, it silently skips that one.

B aa Clustering of embeddings

There are several options, how to cluster behavior embeddings produced
by one of the proposed methods. In Section |3.8 we discussed well-known
clustering algorithms and it is a task for experiments to determine which
clustering algorithm suits best-given type of data. However, there are some
parameters of the clustering that need to be addressed. In this section we
start with a discussion about selecting the number of clusters, and it is
without any prior knowledge about the nature of the clusters in the data
quite complicated task. Next, we focus on selecting distance measure for
the clustering algorithm and we end up the section by describing divisive
clustering algorithm with feature pruning.

B 4.4.1 Selecting number of clusters

Selection of k in clustering algorithms is an uneasy task, especially when
there is no prior knowledge about the cluster structure in the data. Some

25

4. Design and approach

clustering algorithms, such as DBSCAN do not require specification of the
number of clusters, because it does reveal the clusters during its run. On
the other hand, there are for example k-means or k-medeoids, that require
k explicitly specified. There are many techniques that may help to decide
about the number of the clusters. There is "rule of thumb" method saying
that k = /4 where n is number of observations. However, this is not very
exact so that we will take a look at two different methods - elbow method
and silhouette.

B Elbow method

First method that helps with detection of value k is so-called elbow method.
This method is applicable only to centroid-based clustering algorithms. We
start with a small number of clusters k, and we repeat following actions:

1. run K-means with k
2. calculate sum of squared errors SSFE as following: 2% | e T — will?

3. if the difference from last run is below a threshold, terminate. Otherwise
increment k£ and go to step 1

To better understand elbow method, we may plot the values of SSFE
according to k and look for an elbow in a plot. Location of the bend is usually
an indicator of an appropriate number of clusters. This method is dependent
on the threshold, that determines the elbow.

Bl Silhouette

This metric proposed by [Rousseeuw, 1987] provides an internal evaluation
metric for determining quality of a clustering. Silhouette value is measure
how similar is object ¢ with other objects in the same cluster compared to
objects in other clusters. Value s(i) is calculated as follows:

: b(i) — a(i)
= 4.2
) = ax{a(), b)) (42
where a(i) stands for the average distance between i and all the other
points within its assigned cluster C;. Now we define function d(i, ¢), which

equals to the average distance between ¢ and all the points in the cluster
c € C'\ C;. Lastly, we define function b(i):

b(i) = Cgi%i d(i,c) (4.3)

Value of the silhouette is in the range from -1 to 1, where -1 means that
the data are clustered wrongly and match better neighboring clusters. On

26

4.5. Semi-supervised learning

the other hand, values approaching 1 are the sign of good cluster assignment.
If s(i) equals to 0, then i is laying on the border of two clusters.

Computing just single silhouette value is not very useful, so there are two
methods how to use this value. The first option is to compute the average
of s(i) for all data points i. This averaged value can be used to determine
the number of clusters (goal is to maximize silhouette). Another option
is to construct silhouette plot, where for each cluster values of all s(i) are
calculated and sorted per cluster. Then all the computed and sorted values
are plotted as horizontal bars, and quality of the clustering can be checked
visually.

B 4.4.2 Distance measure

To measure the distance between two points in clustering, we may choose
different metrics. Most common distance metrics is Euclidean distance, that
is calculated as follows:

(4.4)

This distance metric is used for k-means clustering. To use it in context
of this thesis, we always have to normalize input vectors as L2-norm. For
agglomerative clustering algorithm, we use cosine distance which is described
in Section 13.5.

B a5 Semi-supervised learning

This section will discuss two different approaches to semi-supervised learning
applied in this work. The first approach is label propagation with k-nearest
neighbors and the second one is based on training NN-d model with knowledge
about some classes.

Bl 4.5.1 Label propagation

Method of semi-supervised learning presented in Section [3.9.1] appears to be
suitable for this work, thanks to its tendency to form communities in the
graphs. This property may be beneficial thanks to the assumption, that users
with similar behaviors should be close to each other in the vector space.

To determine weight in the graph for label propagation, we relax the
condition of full connectivity by building k-nearest neighbor graph. That
means in case of label propagation weights, that w;j = 1 when j is among k
nearest neighbors of 7. Otherwise the weight of the edge w;j = 0 (that means
there is no edge between two nodes in the graph). This approach highly

27

4. Design and approach

reduces memory requirements for further computations, because of the high
sparsity of the graph. The fully connected graph would take O(n?) memory,
in comparison with O(k % n) where k is the number of neighbors and n is a
number of labeled and unlabeled points.

B 452 NN-d

The second method of semi-supervised approach is based on training NN-
d behavior model with some knowledge about labels. In Section 4.3.2 is
mentioned that it is possible to train every sequence with one or more tags.
We utilize this possibility and train NN-d model where every sequence have
an identifier as a tag, and some of the sequences also have a label. Then
during the training phase of the neural network, we present the sequence to
the network either with an identifier or a label. This approach then allows
us to get the representation of the label and then compare cosine distance
between label and identifier embeddings. The classification of unseen labels
then will be done by calculating all similarities between embeddings of labels
and unlabeled sequences and assigning a label that is most similar to the
sequence.

B 26 Summary of the chapter

This chapter presented approach how to transform visitor’s raw data into
sequences of events and then build embeddings of those sequences in the
vector space. Those vectors can be clustered into groups of similar behaviors.
The whole process is displayed in 4.6/ and in the next chapter we will cover
its implementation. and describe technical details of single steps.

28

4.6. Summary of the chapter

5

——
M———

Raw website events

\T/ User modeling

Extract set of interest l o l --------- '
Build vocabulary Perform LSA
\ 4
\ 4
Preprocessing preeme e '
Filter least frequent . .
e : events ---7 Determinek !
CERTE ---4 Clusterize URLs !
v v
Build and normalize
Build sequences embeddings Clusterize
FB-k/d or NN-d

Figure 4.6: Architecture of the pipeline

29

30

Chapter 5

Implementation

B 51 Technology stack

For the implementation of the thesis, a variety of technologies is used. At
first, the data retrieval from the ElasticSearch is implemented in Node.js. It
is JavaScript based runtime environment, and it was fairly easy to integrate
with existing Smartlook technology stack which is based on it. The actual
data processing, models training, and evaluation is then implemented in
Python 3.5 (build from the Anaconda distribution). All the data exploratory
tasks and prototyping were done in Jupyter notebooks which is very flexible
and interactive, so it is fairly easy to quickly explore multiple solutions.

For data retrieval, the official ElasticSearch JavaScript client is used for
its simplicity and low overhead. A retrieved dataset is then stored into CSV
(Comma Separated Values) files, which are easily portable. On Python side,
there is wider range of the libraries used. The ecosystem of machine learning
libraries is becoming very mature, and many implementations of popular algo-
rithms is available there. Used Python stack stars with Pandas for data ma-
nipulation, NumPy [Jones et al., 01 | and SciPy [Jones et al., 01] packages
provided numerical routines and effective implementations for sparse matrices,
scikit-learn [Pedregosa et al., 2011] and Gensim [Rehiitek and Sojka, 2010]
for feature engineering and model building and finally matplotlib and Multi-
coreTSNE for the visualisation. Gensim library is implemented to be very
effective in cython and in combination with linear algebra low-level library
BLAS it delivers 72 times higher performance in comparison with baseline
implementation using pure NumPy [Rehiitek, 2013]. All the used libraries
are provided as open-source.

Data were obtained from the hosted Smartlook’s ElasticSearch cluster on
AWS. All the data processing and computations were done on a local machine

running Mac OS with 2,7GHz Intel Core i5 and 16GB of RAM.

31

5. Implementation

. 5.2 Dataset retrieval

Dataset was stored on AWS on the ElasticSearch cluster. Size of the raw
dataset was about 15 million entries of various types and limitation of AWS is
that the connection to the load balancer times out after 30 seconds. To avoid
timeouts we implemented streaming wrapper around ElasticSearch scroll API,
that allowed us to retrieve data in chunks that were transferable in 30 seconds
time window.

To reduce dataset size beforehand, we used ElasticSearch DSL queries to
extract the set of interest described in Section [4.2] by applying wildcard query
on pageUrl field.

B 5.3 Behavior Embeddings

The frequency-based model is built on top of the magnificent scikit-learn
library. To create baseline and FB-k/d model we use Tf-idf vectorizer and
Truncated SVD that plays nicely together.

The NN-d model was implemented using well known Gensim library and
its doc2vec model. This library provides a variety of NLP algorithms, and
utilities and it is well optimized to work on CPU. This made this library
good-enough for prototyping. However, training complex models with large
corpora can be cumbersome due to its lack of ability to use GPU for training.
First experiments with NN-d model did not make use of BLAS together with
Gensim cython implementation and training of the model took about an hour
depending on the size of the corpora and dimensionality of the embeddings.
After adding support for numpy with BLAS, training time was reduced to
minutes.

32

Chapter 0

Experiemntal part: Dataset and models

In this chapter, we cover preprocessing of the dataset and select ideal pa-
rameters for building sequences. Then we define a baseline behavior model
and evaluate it together with other proposed models for building behavior
embeddings.

The dataset provided by Smartlook contained raw data described in Sec-
tion 4.0.1} Events were gathered from January to March 2018 and contain
records of all users that visited some page on domain smartlook.com. To put
dataset in light, Smartlook.com is a SaaS company that records the activity
of visitors on partner websites and playbacks records in screen-capture-like
fashion. Due to the highly private nature of the dataset, it is not possible to
present its entries publicly. The original dataset contained around 10 million
events, and this number was reduced to 300k after preprocessing, cutting of
all users with sessions shorter than 30 events and extraction of the set of
interest (described in Section [4.2). We excluded the actual dashboard of the
Smartlook application (that means all URLs that contain /app/) from the
set of interest, because of its high complexity and its redesign in February
(therefore the events meta-data would not be consistent between two different
designs). In the experiments, the dataset will be referred as SL300.

B 6.1 Dataset exploration

Dataset SL300 contained 301k events of various types (listed in Section
and represented 4419 different visitors. The number of events per visitor is
displayed in Figure There were 5803 unique URLSs from different language
mutations of the application. Those addresses were divided into 8 clusters,
where one contained mix of very short URLs and others could be represented
as:

1. player for shared records

2. platform documentation

33

6. Experiemntal part: Dataset and models

3. application help

4. shared heatmaps of clicks
5. pricing

6. blog

7. contact

=
o
W

-
o
.

Number of users

-
o
4

100 4

0 50 100 150 200 250 300 350 400
Number of events

Figure 6.1: Number of events per user in the dataset with the reduced set of
interest. A dashed red line represents cut-off for users with less than 30 events.

. 6.2 Baseline model

To have some point of reference for other models, we now define a baseline
model. As a baseline implementation, we used the binary encoded vector of
events. That means there was 1 when the event was present in the user’s
sequence. Otherwise, 0 was set. This model can be thought of as sum of
one-hot encoded feature vectors with values clamped in interval (0;1).

. 6.3 Cross-validation

All evaluations of the supervised tasks were performed using k-fold cross
validation, where k = 5. This method splits data randomly into k£ groups,
then the model is trained on k — 1 groups and the remaining group is used for
validation. This process is repeated k£ times and each group is used exactly
once for validation. Results of all k£ runs are then averaged.

B o4 Building a sequence

After cleaning the data, we had to build a sequence. For the further experi-
ments, we evaluated multiple options in encoding behavior into the sequence

34

6.5. Behavior embeddings

and selected the best performing one. Evaluation presented in Table [6.1
was done by performing the supervised task. As a classifier we used logistic
regression evaluated with 5-fold cross-validation. As a training dataset we
used embeddings from baseline model for every examined sequence and as a
label for the users’ models we used knowledge about their state - whether
the user is logged or anonymous.

Parameters for building sequences were following (further explanation can
be found in Section 4.2.5):

SL300-A used complete CSS selectors and sequences contained just a click
events

SL300-B clicks and inputs were identified by their values and url events
were identified by the number of a cluster

SL300-C clicks and inputs were identified by reduced CSS selectors and url
were not clustered

SL300-D clicks and inputs were identified by reduced CSS selectors combined
with URL clusters and url events were identified by the number of a
cluster

SL300-E clicks and inputs were identified by reduced CSS selectors combined
with URL clusters and url events were not clustered

Based on results presented in Table|6.1 SL300-C will be used in all further
experiments.

Accuracy

SL300-A || 0.8933 £ 0.0286
SL300-B 0.8866 + 0.0219
SL300-C || 0.9050 & 0.0163
SL300-D || 0.9011 + 0.0261
SL300-E 0.9036 £ 0.0156

Table 6.1: Accuracy of Logistic regression on different sequence types

B 6.5 Behavior embeddings

In this section, we evaluate the quality of the embeddings that were produced
by both proposed methods. For evaluation of the quality of the embedding
we use the same supervised task as was used in Section [6.4l

35

6. Experiemntal part: Dataset and models

B 6.5.1 Frequency Based Model (FB-k/d)

Frequency-based model is implemented as described in Section 4.3.1. Hyper-
parameter of this model is a range of n for which a vocabulary of n-grams
is constructed. Results of evaluation of different FB-k models are shown
in Table 6.2 Highest accuracy was delivered by 1-5-grams model, which
encapsulates all the other models together. The downside of this model is the
size of produced embedding 32210. FB-k produces very sparse vectors and
having the vector of this length may be inconvenient in many applications.
Therefore we examined model FB-k/d which use SVD (singular value decom-
position) to reduce the dimensionality of embeddings produced by FB-k. We
experimented with d = 80 and d = 300 and results are presented in Table |6.3.

k Embedding size | Accuracy

Unigrams 1222 0.8755 4 0.0251
Trigrams 9197 0.8662 + 0.0304
5-grams 7200 0.8282 £+ 0.0418
1-5-grams || 32210 0.8762 £ 0.0253

Table 6.2: Sizes of the embeddings and accuracy of FB-k models with different k

d = 80 Explained variance | Accuracy

Unigram || 70% 0.8755 + 0.0215
Trigram 35% 0.8726 £ 0.0300
5-gram 27% 0.8314 £ 0.0364
1-5-gram || 40% 0.8714 £ 0.0228
d = 300 Explained variance | Accuracy

Unigram | 90% 0.8755 +0.0214
Trigram 54% 0.8692 £ 0.0298
5-gram 47% 0.8414 £ 0.0349
1-5-gram || 60% 0.8737 £0.0137

Table 6.3: Accuracy of FB-k/80 and FB-k/300 (dimensionality of embeddings
reduced to 80 and 300, respectively) models with different &

B 6.5.2 Neural Network Based Model (NN-d)

Second proposed model based on PV-DBOW architecture has only one
hyperparameter to set, and that is dimensionality of produced embedding (in

36

6.5. Behavior embeddings

case of the PV-DBOW it is the number of neurons in hidden layer). Other
hyperparameters of the model were fixed. The negative sampling was set to
5, and all models were trained for 30 epochs. All models were evaluated in
the same way as a baseline model in Section [6.4. For all experiments, we
build a vocabulary of events with frequent bigrams and trigrams and removed

consequent duplicates in sessions. Results for various values of d are shown
in table Table [6.4.

d Accuracy

10 0.8844 £ 0.0098
80 0.8871 £0.0147
150 || 0.8884 £ 0.0060
300 || 0.8914 +0.0112

400 || 0.8875 % 0.0108
600 || 0.8905 £ 0.0120

Table 6.4: Accuracy of NN-d for various values of d

B 6.5.3 Discussion of results

The results above show that model NIN-d outperformed behavior model
FB-k/d in all its configurations. However, none of the proposed models were
able to surpass results of baseline model in the classification task.

37

38

Chapter 7

Experiemntal part: Clustering

In the next part of the experiments, we focus on clustering of the embeddings
and evaluation of the clusters. We start with determining the number of
clusters and visualization of the clusters. In the next part of the chapter, we
explore clusters a describe users in them manually.

. 7.1 Visualization of the data

To be able to visualize high dimensional data in a 2-dimensional plot it is
necessary to reduce a dimension of that space. Methods such as PCA or SVD
does not always produce results, which are very informative when displayed
in 2 or 3-dimensional space.

Method called t-Distributed Stochastic Neighbor Embedding seems
to be much more suitable to visualize the data when PCA and another
techniques fail. It is a nonlinear dimension reduction method that models
points that were similar in the original high dimensional space near to each
other in lower-dimensional space|van der Maaten and Hinton, 2008|. This
technique is very popular to visualize data. However, interpretation of
the produced results must be made carefully. Low-dimensional projection
can sometimes show properties, that may not be true in the original high-
dimensional space, thanks to the nonlinear nature of the projection.

B 7.2 Frequency Based Model (FB-k/d)

To present how the number of clusters was chosen, we decided to use a FB-1
model. We start with elbow plot Figure There is a visible elbow for
k = 10. Therefore it is the candidate for the number of clusters. Then
we move forward to the plot of silhouette values Figure [7.1b. There is a
maximum also for k£ = 10, so therefore we assume that there are 10 clusters.
To show the clusters in two-dimensional scatter plot, we used TSNE projection
Figure |7.1c

39

7. Experiemntal part: Clustering

117
3600 0

0.16

3400 0.15 1

3200 g 0141

SE

[
3 0.131

]
3000 B 0124

2800 1 0117
0.10

2600 1

(U e e e e e e e e e e s s

12345678 910111213141516171819 23456 7 8 9101112131415 16 17 18 19
K K

(a) : Elbow plot (b) : Silhouette values

(c) : TSNE projection

Figure 7.1: Elbow plot and silhouette values for FB-1 model, TSNE projection,
k-means, red dot indicates elbow/maximum

The next example is attached in Appendix [C. It shows elbow plot and
silhouette values for model FB-1-5/300. Elbow occurs for k = 11, however,
silhouette value has its maximum for k = 18. Silhouette value for £k =1 is
local maximum, therefore we may assume, that k = 11. This result is very
similar to results from FB-1 model, therefore k = 11.

B 7.3 Neural Network Based Model (NN-d)

In this section, we examine clustering results for behavior embeddings pro-
duced by NN-300. This model had the best performance in supervised task
presented in Chapter [6 therefore we chose that model to evaluate cluster-
ing. The elbow plot Figure shows, that elbow appears for k = 8. The
silhouette value has its peak for £k = 11. The number of clusters may lay
somewhere in-between those values.

More interesting observations can be done by taking a look at Figure
in comparison with cluster assignments in Figure Clusters 2, 6, 7 and 10
resemble clusters formed by anonymous users. With different types of labels
(e.g., users with identified malicious behavior) the resemblance might be even
more significant.

40

7.4. Evaluation by hand

In Appendix [D] are shown results of agglomerative clustering. The distance
metric was cosine and linkage was set to average. The results of this experi-
ment were disappointing. Average silhouette value was much lower than in
case of the k-means. This is a sign of poorly constructed clusters, and objects
within cluster tend to be dissimilar to each other.

0.21

2800
0.20
2600

0.19 1
2400

Silhouette

2200

2000 0.17 4

1800 0.16 4
vvvvvvvvvvvvvvvvvv

123456 7 8 91011121314151617 1819 2 345 6 7 8 9 1011121314151617 18 19
k k

(a) : Elbow plot (b) : Silhouette values

ecene
LomuouswNeo

s

(c) : TSNE projection (d) : Users with known labels

Figure 7.2: Elbow plot and silhouette values for NN-300 model, TSNE projection,
k-means, red dot indicates elbow/maximum

B 7.4 Evaluation by hand

Evaluation of cluster analysis is not usually straightforward due to its unsu-
pervised nature, and it often has to be evaluated by a human expert.

In this section we inspected results of clustering, to see whether the clusters
contain any humanly interpretable assignments. To do an expert evaluation,
we chose FB-1-5 and NN-80, both clustered with k-means, where k was set
to 11 and 12, respectively.

B 7.4.1 Case study: Description of FB-1-5 anomalies (SL300)

This experiment was performed on SL300 dataset, and the behavior of the
users was modeled using FB-1-5. To describe cluster anomalies we took a

41

7. Experiemntal part: Clustering

look at the users most distant from the clusters centers.

To describe anomalies, we looked at the list of 3 users, whose average
similarity to all cluster was lowest. The most outlying user had an average
similarity of 0.012, and his behavior was just a set of rapid clicks on Rewviews
button. The second user with cosine similarity of 0.014 got stuck on one page
and repeatedly clicked on an emergency button. Last examined user with an
average similarity of 0.017 could not approve a form and continue further to
the application.

B 7.42 Case study: Description of NN-80 clusters (SL300)

This experiment was done on dataset SL300 and behavior of user was modeled
using NN-80. To evaluate this clustering, we find users that are closest to the
centroids of the cluster. Then we transform event sequences to the readable
form of CSS selectors and URLs and try to discover any human-readable
meaning. Then we compare our findings with a visual representation of
recordings in the Smartlook dashboard.

600 A

500 A

400 A

300 ~

200 4

100 A

7 6 0 1 3 10 2 9 11 5 4 8
Cluster number

Figure 7.3: Sizes of the 12 cluster for NN-80.

After further inspection of all clusters and consulting inspection results
with visual recordings, we can describe them as following:

0. anonymous visitors interested in pricing, features

1. users of Smartlook.com, that are just checking the dashboard (login
through the form)

2. wusers of Smartlook.com, that are just checking the dashboard (persisted
session)

3. visitors interested in pricing

42

7.4. Evaluation by hand

4. no interpretable patterns

5. blog readers

visitors interested in features and partners of Smartlook
similar to cluster number 1, however, visitors are more active
8. visitors interested in awards and partners

9. visitors playing shared records (activity from a different part of the
application than the rest)

10. users, that upgraded package after login

B 7.4.3 Interesting features

There were some interesting observations done while conducting various
experiments. At first inspection of the users near to the clusters centers was
not as informative as inspection of users that were most dissimilar from the
centroids. Thanks to the observation of those users, we were able to identify
misbehaving users of the Smartlook platform, which may be in practice even
more valuable that inspection of familiar patterns.

The second experiment was done on embeddings of single events. This
experiment showed interesting results in terms of learning semantic meaning
of the events. In Section [3.6l we mentioned how word vectors can be added
or subtracted and resulting vector will resemble semantically related word.
Embeddings of single events shows similar properties (visualisation is in
Appendix E|). It was possible to perform an equation like a clicksga — clicksgs +
clickiosg =~ clicksgs, where clicksge was login input, clicksgs was just some
input somewhere in the application and clicki23¢ was button, that submitted
form of clicksgs. clicksgs was suprisingly submit button of the login form.
That means that event embeddings may carry a lot of information about
structure of the application. This property can be used to reveal unknown
usage patterns or for example detect which button caused an error, by
exploring events nearest to the error.

43

44

Chapter 8

Experiemntal part: Semi-supervised
learning

In this chapter, we discuss results of semi-supervised methods. First of two
examined approaches is a label propagation. In conducted experiments, we
assumed that users tend to form communities and therefore label propagation
as described in Section [3.9.1 could be ideal for this kind of task. The second
approach is based on NN-d model, where we could assign multiple tags to
a single user and train the model with some of the tags and then by using
cosine distance between predicted tags and users decide what label to assign
to the user. To train semi-supervised models we used a small subset of labels
used in Section (labels were representing the state of the user - whether
is he anonymous or logged).

B 8.1 Label propagation

In label propagation with k-nearest neighbors the main hyperparameter to
tune is a number of neighbors, that will be affecting the value of a label.
To show the differences between various models in the semi-supervised task
of label propagation, we conducted an experiment, where we took labeled
data from Section and preserved 5% of labels. Then we trained label
propagation model with different values of &k, and then we plotted the accuracy
of the predictions made by the model on a training set (rest of the dataset,
that was not labeled). Results can be seen in Figure

For conducted experiments, it turned out that NN-300 model performed
best for all numbers of neighbors, although with some neighbors growing,
all results became very close. The accuracy for two neighbors was =~ 0.4,
and that was not enough to provide any quality model for provided data.
NN-300 model was trained with frequent bigrams and trigrams and removed
consequent duplicates in the sequences. The other model FB-1-5/300 was
trained with 1-5-grams, and then the dimensionality of the embeddings was
reduced to 300.

45

8. Experiemntal part: Semi-supervised learning

—A— Baseline
0821 _, NN-300
0.80 - —A&— FB-1-5/300

0.78 1

0.76

Accuracy

0.74 1

0.72 1

0.70 A

0.68 -

0.66

2 7 15 20 30
Number of neighbors

Figure 8.1: Influence of number of neighbors to accuracy measure on the test
set (5% of labels used)

Results showed that NN-d model could capture well semantical similarity
of users behavior and it is possible to group them well into communities.

B 82 NNd

The second semi-supervised experiment is based on NN-d model. The unla-
beled sequences are trained, as usual, that means identifier of the sequence is
trained to predict the probability of words in the document and the labeled
sequences are used for training twice - once with the identifier and second
time with the label. Therefore, in the end, there is calculated embedding for
every sequence and every label. Then we decide based on the cosine similarity
between labels and sequences, what label to assign (assigned is the label that
is the most similar).

To examine this method, we conducted an experiment where we tried to
train different models with a various number of known labels, and then we
plotted accuracy of the model on the test set. Results of the experiments
with a comparison to baseline are shown in Figure 8.2l

Training NN-d model with labeled data may be combined with label
propagation in a way, that we train a NN-d model with knowledge about labels
and then we use embeddings from this model to build label propagation model,
that uses same labels as NN-d. This should help tighten the communities with
similar labels. Results of this are visible in Figure 8.2, where there is a red
line, which represents label propagation model trained solely on embeddings
produced by NN-300 and labels were used only in label propagation. The
purple line represents results from label propagation model, that was trained
on embedding produced by NN-300 with knowledge about labels. Both

46

8.2. NN-d

0.85
0.80
0.75 4
>
© 0.70
3
(9}
o
< 0.65 1
—A— Baseline
0.60 {4 —A— FB-1-5/300
—A— NN-300 (tags)
0.55 4 —&— NN-300 (label propagation)
—A— NN-300 2 (label propagation)
0.5 0.2 0.1 0.05 0.01 0.005

Percentage of labeled data

Figure 8.2: Influence of number of known labels to accuracy measure on the
test set (all models were label propagation with 15 neighbors, with exception of
NN-300 (tags)

methods performed fairly similar, and the only difference was when there
was less labeled instances, the second model using embeddings trained with
labels performed slightly better. Overall the best results were delivered by
the semi-supervised solution NN-300 (tags), especially when the amount of
labeled data was higher. However, accuracy declined rapidly with fewer
data. With least amount of data, the best performing model was baseline
behavior model with label propagation. This might be because of the binary
representation, that can provide good results when there are only two labels
that can be easily separated by few significant features.

47

48

Chapter 9

Conclusion

The goal of the thesis was to clusterize users based on their behavior. To do so,
we used models build on a clickstream data and other events from the browser.
In the first part of the thesis, we review current state-of-the-art methods
for building behavior models together with techniques that are related to
this problem. As it turned out, modeling of user behavior often internally
resembles NLP tasks, so we took advantage of this knowledge, to explore a
wider range of possible techniques. We also researched different methods of
clustering and semi-supervised learning to find a suitable approach for the
domain of our data.

In the next part, we then propose different methods for building behavior
embeddings. The first method is based on weighted frequencies of the browser
events with various sizes of the context window. The second approach is based
on the technique called distributed bag-of-words. Embeddings produced by
those methods were then used in other tasks in order to find clusters of similar
users and train semi-supervised models.

Last part of the thesis is devoted to the experiments. Results were heavily
dependent on a type of the task, that was performed. In supervised learning
tasks, none of the proposed behavior models was able to surpass results of the
baseline model. However, in semi-supervised tasks and clustering, the results
of the second method were ahead of the others. In clustering task, best results
were obtained by traditional algorithms, and among semi-supervised methods,
highest accuracy was obtained by utilizing neural network approach.

Performance of produced behavior embeddings during different tasks is not
significantly better than the baseline solution. However distributed bag-of-
word captures semantic relations among the users very well, and when we
applied this method on the level of single events, it produced some impressive
results that would worth further research.

49

9. Conclusion

. 0.1 Future work

In this thesis, we presented baseline for using frequency vectors and dis-
tributed bag-of-words to represent user behavior, and we evaluated produced
embeddings on various tasks. The results seem to be promising, and we
propose three different options, how to extend this work. First of all, during
the clustering experiments, exploration of the clusters was not easy. It would
make sense to have some dynamic visualization of the clusters, maybe even
integration with the actual web application, to better understand the context
of the behaviors. Next possible direction could be deeper integration of word
embeddings into the behavior models. The behavior of the users is often
driven by the content of the web itself, so it would make sense to move focus
from meta-information, such as CSS selectors and move to the actual content
during modeling behavior of the user. Lastly, it would be interesting to
explore more profound possibilities of detection of malicious behaviors by
using distributed representations.

50

Appendix A

Raw recorded event

"type": "event",

"eventType": "click",

"eventName": null,

"sourceType": "website",

"pid": "5abOdfdd4faa3243480306al",

"vid": "aidqt6_65a",

"sid": "ni6-gP40JcB",

"rid": "amdkR2dO1EY",

"time": 554342,

"timeCreate": "2018-03-28T14:47:38.183Z2",

"value": "Products",

"pageUrl": "https://example.com/section/first-product",
"selector": "HTML BODY DIV.row.text-center DIV.col-12",

"props": [
{
"type": "internal",
"name": "pageTitle",
"value": "Example Product"
}
15
"elements": [
{
"classes": [
"col-12"
15

"tagName": "DIV",
"nthOfType": 1,
"nthChild": 1

o1

52

Appendix B
NN80 with 12 clusters

404
204
oA
_20 .
—404
_.60 .
X
—20 —20 0
% 0-Anon. 2 - Logged * 5-Anon.
® O0-Logged 3 - Anon. ® 5-Llogged
1-Anon. 3 - Logged x 6-Anon.
1 - Logged *x 4-Anon. ® 6-Llogged
2 - Anon. ® 4-Llogged » 7-Anon.

20

7 - Logged
8 - Anon.
8 - Logged
9 - Anon.
9 - Logged

® X @ X

40

- Anon.
- Logged
- Anon.
- Logged

Figure B.1: Colored clusters of users in SL300 modeled by NN8O split into 12
clusters with K-Means. Each point represent one user and shape of the point

resembles the state of the user.

53

o4

Appendix C
FB-1-5/300 - Clustering

4000 A

3800 A

3600 A

SSE

3400 A

3200 A

3000 A

1 23 456 7 8 91011121314151617 1819
k

Figure C.1: Elbow plot

55

C. FB-1-5/300 - Clustering

AN /‘\

Y

/NS

s

/

0.16

0.14

o~
—
o

o
—

5
anenoy|is

o)
Q
o

0.06

2 3 45 6 7 8 9 101112131415 16 17 18 19

Figure C.2: Silhouette values

o
O-H ANMST N ON~NO0O A

_10

_20

-30

_20

40
201

0
—20

—40 1

40

30

20

10

Figure C.3: TSNE projection

56

Silhouette

Appendix D

NN-300 - Agglomerative clustering

0.125 -

0.120 -

0.115 -

0.110 -

0.105 A

0.100 A

2 3 45 6 7 8 9 10111213 14 1516 17 18 19
k

Figure D.1: Average silhouette values

o7

D. NN-300 - Agglomerative clustering

o

O-H AN M WN O™~ 0O -

-10

-20

30
20 A

—-10 1
—20 1
—30 1

30

20

10

Figure D.2: TSNE projection

o8

Appendix E
Event embeddings (PCA)

99

E. Event embeddings (PCA)

] lick-362 ® Inputs
ol ® Buttons
@lick-2
8-
lick-363
@lick-3
61 §lick-392
@lick-393
4
5] @lick-515
lick-589
Slick-193 “
lick888 @lick A28 o7y @lick-365
@lick-125 13
ck- ick: -
o1 i :207 dk&'ﬁ%zsa @lick-273 glickt
‘hckﬁ@k,,;si L "iﬁu 39 @lick-113
@lick-477 elick-187
&lick-780 @lick-396
By lick-6 lick-41
Slick€19e%° &lick-1394 lick-1231
slick-1236
1T k300 lick-276
@lick-s
—44
—61 §lick-21
-5.0 -25 0.0 25 5.0 7.5 10.0 125

Figure E.1: PCA visualization of inputs and buttons in the application. Those

embedings capture quite well semantic structure of the application.

10 o Inputs
@frm-signin-form-password © Buttons
@frm-signin-form-email
8
GNPUT-+btn btn--primary
@frm-passwordReset.form-email
6 @ frm-passwordChange-form-password
@ fm-passwordChange-form-passwordVerify
4
, @frm-inviteActivate-form-password
i invteActivate form-passworVerily
srron ﬁuwomm Piose ca
@ o BTN S R RSSYSONSIIR mip-prevent.close @#frm-signUp-form-password
email)
@frm-invi fpreRremAlbmail frm-signUp-form-email
o fm%ﬁgac%rm-na EUTTON-+button button-primary button-thin buttofl-amai
PursorcRHRR 8 Maﬂ“k@;ﬁpmwwpwmgm button-thin button-small
NPuT y o Buaon - dlcabied
BUTT ider_input
) dNPUT put-component__input bill pdate-input bl pdate-input-i
PUT +ext i P input billn pdate-input billing-info-upd Hiingriod
PO, AR oA Fraomainglide? 14
. BUTTON +button-v2 button-v2--primary--infrerted
T B DR GBS B ary B oy BURSH "R PHARE e Bk SRRy
e dNPUT put-component_input pdate-inp
BUTTON
-5.0 =25 0.0 25 5.0 75 10.0 12.5

(BUTTONfbutton button--secondary

Figure E.2: PCA visualization of inputs and buttons in the application with

reduced CSS selectors

60

Appendix F

Bibliography

[ngr, 2018] (2018). n-gram.

[Chapelle et al., 2010] Chapelle, O., Schlkopf, B., and Zien, A. (2010). Semi-
Supervised Learning. The MIT Press, 1st edition.

[Chen, 2018] Chen, H.-H. (2018). Behavior2vec: Generating distributed
representations of users’ behaviors on products for recommender
systems. ACM Trans. Knowl. Discov. Data, 12(4):43:1-43:20.

[Deshpande and Karypis, 2004] Deshpande, M. and Karypis, G. (2004). Se-
lective markov models for predicting web page accesses. ACM Trans.
Internet Technol., 4(2):163-184.

[Harris, 1954] Harris, Z. S. (1954). Distributional structure. WORD, 10(2-
3):146-162.

[Hartigan and Wong, 1979] Hartigan, J. A. and Wong, M. A. (1979). A
k-means clustering algorithm. JSTOR: Applied Statistics, 28(1):100-108.

[Jones et al., 01 | Jones, E., Oliphant, T., Peterson, P., et al. (2001-). SciPy:
Open source scientific tools for Python. [Online; accessed <today>].

[Jones, 1973] Jones, K. S. (1973). Index term weighting. Information Storage
and Retrieval, 9(11):619 — 633.

[Jonas, 2017] Jonas, A. (2017). Modeling on-line user behavior using url
embedding.

[Le and Mikolov, 2014] Le, Q. V. and Mikolov, T. (2014). Distributed repre-
sentations of sentences and documents. CoRR, abs/1405.4053.

[Lu et al., 2006] Lu, L., Dunham, M., and Meng, Y. (2006). Mining sig-
nificant usage patterns from clickstream data. In Nasraoui, O., Zaiane,
O., Spiliopoulou, M., Mobasher, B., Masand, B., and Yu, P. S., editors,
Advances in Web Mining and Web Usage Analysis, pages 1-17, Berlin,
Heidelberg. Springer Berlin Heidelberg.

61

F. Bibliography

[Ma et al., 2016] Ma, Q., Muthukrishnan, S., and Simpson, W. (2016).
App2vec: Vector modeling of mobile apps and applications. 2016
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 599—606.

[Manning et al., 2008] Manning, C. D., Raghavan, P., and Schiitze, H. (2008).
Introduction to Information Retrieval. Cambridge University Press, New
York, NY, USA.

[Mikolov et al., 2013a] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., and
Dean, J. (2013a). Distributed representations of words and phrases and
their compositionality. In Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’13, pages
3111-3119, USA. Curran Associates Inc.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. (2013b). Distributed representations of words and phrases
and their compositionality. In Burges, C. J. C., Bottou, L., Welling, M.,
Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 26, pages 3111-3119. Curran Associates,
Inc.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825-2830.

[Raghavan et al., 2007] Raghavan, U. N., Albert, R., and Kumara, S. (2007).
Near linear time algorithm to detect community structures in large-scale
networks. Physical Review E, T6(3).

[Rehtifek and Sojka, 2010] Rehiiiek, R. and Sojka, P. (2010). Software Frame-
work for Topic Modelling with Large Corpora. In Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks, pages 45-50,
Valletta, Malta. ELRA. http://is.muni.cz/publication/884893/en.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis. Journal of Computa-
tional and Applied Mathematics, 20:53 — 65.

[Sagar Arora, | Sagar Arora, D. W. Decoding fashion contexts using word
embeddings.

[Scott et al.,] Scott, D., T., D. S., W, F. G., K., L. T., and Richard, H.
Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391-407.

[Silahtaroglu and Donertasli, 2015] Silahtaroglu, G. and Donertasli, H.
(2015). Analysis and prediction of e-customers’ behavior by mining click-
stream data. In Proceedings of the 2015 IEEE International Conference

62

http://is.muni.cz/publication/884893/en

F. Bibliography

on Big Data (Big Data), BIG DATA ’15, pages 14661472, Washington,
DC, USA. IEEE Computer Society.

[van der Maaten and Hinton, 2008] van der Maaten, L. and Hinton, G. (Nov
2008). Visualizing high-dimensional data using t-sne. Journal of Machine
Learning Research, 9: 2579-2605.

[Vasile et al., 2016] Vasile, F., Smirnova, E., and Conneau, A. (2016). Meta-
prod2vec: Product embeddings using side-information for recommendation.
In Proceedings of the 10th ACM Conference on Recommender Systems,
RecSys 16, pages 225-232, New York, NY, USA. ACM.

[Wang et al., 2017] Wang, G., Zhang, X., Tang, S., Wilson, C., Zheng, H.,
and Zhao, B. Y. (2017). Clickstream user behavior models. ACM Trans.
Web, 11(4):21:1-21:37.

[Wang et al., 2016] Wang, G., Zhang, X., Tang, S., Zheng, H., and Zhao, B. Y.
(2016). Unsupervised clickstream clustering for user behavior analysis. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, pages 225-236, New York, NY, USA. ACM.

[Wei et al., 2012] Wei, J., Shen, Z., Sundaresan, N., and Ma, K. L. (2012). Vi-
sual cluster exploration of web clickstream data. In 2012 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 3-12.

[Weller, 2018] Weller, T. (2018). Compromised account detection based on
clickstream data. In Companion Proceedings of the The Web Conference
2018, WWW 18, pages 819-823, Republic and Canton of Geneva, Switzer-
land. International World Wide Web Conferences Steering Committee.

[Zhu and Ghahramani, 2002] Zhu, X. and Ghahramani, Z. (2002). Learning
from labeled and unlabeled data with label propagation. Technical report.

[Rehiifek, 2013] Rehfifek, M. (2013). Word2vec in python, part two: Opti-

mizing.

63

	Introduction
	Goals
	User behavior representation
	Clustering behavior models
	Semi-supervised extension

	Related Work
	Behavior modeling
	Representation with events frequencies
	Neural network based methods
	Markov chains

	Clickstream clustering
	Semi-supervised approaches
	Conclusion

	Theoretical background
	Bag of Words
	Inverse Document Frequency
	n-gram
	Latent Semantic Analysis
	Similarity of vectors
	Distributed representation
	Document extension
	Clustering
	K-means
	Hierarchical clustering

	Semi-supervised learning
	Label propagation

	Design and approach
	Entities in the system
	Proposed idea
	Preprocessing the data
	Extracting the set of the interest
	URL clustering
	Click identification
	Discretizing time component
	Building sequences

	Behavior Embedding
	Frequency Based Model (FB-k/d)
	Neural Network Based Model (NN-d)

	Clustering of embeddings
	Selecting number of clusters
	Distance measure

	Semi-supervised learning
	Label propagation
	NN-d

	Summary of the chapter

	Implementation
	Technology stack
	Dataset retrieval
	Behavior Embeddings

	Experiemntal part: Dataset and models
	Dataset exploration
	Baseline model
	Cross-validation
	Building a sequence
	Behavior embeddings
	Frequency Based Model (FB-k/d)
	Neural Network Based Model (NN-d)
	Discussion of results

	Experiemntal part: Clustering
	Visualization of the data
	Frequency Based Model (FB-k/d)
	Neural Network Based Model (NN-d)
	Evaluation by hand
	Case study: Description of FB-1-5 anomalies (SL300)
	Case study: Description of NN-80 clusters (SL300)
	Interesting features

	Experiemntal part: Semi-supervised learning
	Label propagation
	NN-d

	Conclusion
	Future work

	Raw recorded event
	NN80 with 12 clusters
	FB-1-5/300 - Clustering
	NN-300 - Agglomerative clustering
	Event embeddings (PCA)
	Bibliography

